It's some sort of hornet - a wasp like insect.

That's a good one, i've only seen a few of those, and i've seen MANY insects! It's one of a small obscure group called scorpionflies, order Mecoptera. It's a group actually most closely related to fleas, infact fleas seem to actually be highly modified scorpion-flies! If the newspapers here of this, we'll be in for some headlines!

Take a look at Panorpa communis, a widespread European species. The male end of abdomen is modified in a structure looking like a scorpion stinger, hence the name scorpionflies! Yours may be female.

Not a bee, indeed a fly. A true fly- a group that only have a single pair of wings - Di(two)-ptera(wing)=Diptera. You were on the right track, in Uk these are often called beefly/bee-flies.

Here's some people and links that can likely help - and submit records to know more precisely which of several it can be ...

It's some sort of sawfly, which is a wasp-like insect, only distantly related to true flies (like the black one shown nearby). I'm sorry, there's about 500 species in Uk and i'm not familiar with them, this site looks quite useful (once more data) and can submit observations :

It looks to be an ootheca (eggcase) of a praying mantis. Without your location it's impossible to tie down any further. But, as a point of note, if those are indeed holes i'm seeing along the midline, it already hatched, maybe some time ago. The eggs are laid along the midline. The cases are tough and can survive quite a long time (several years even) if kept died.

Take a look at various Sawflies, theyre closely related to Bees, Wasps and Ants, and actually quite divergent from true flies.

Your son's questions are awesome!

The feet are indeed there, and called Tarsi. Often they have 1 - 3 claws, which can be saw like (serrated) for extra grip.

Many spiders the front (4) legs are directed so stretch forward, and the rear (4) legs streatch backwards, so in total mostly forwards backwards. But, in particular the middle legs can change angle, so help the spider rotate.
Some spiders have primarily sideways legs - laterigrade. Crab spiders in particular. Then indeed movement will often be sideways, but these often prefer just to sit and wait ... so not much movement at all!

Please tell your son i enjoyed his excellent questions!

Indeed i agree to beetle larvae, i'm not up on those, but point you also to carabid beetles - family Carabidae (i.e. ground beetles) also. Would be a helpful garden guest - a predator of other inverts that may be considered pests.

With that many legs and two sets of antennae ... no insect - no 'bug' nor 'flea'. Those are Crustacea.

Do you live near a beach/sea shore, or have just visited, if so my bet would firmly be on harmless amphipods, often found on shorelines, and harmless detritivores.

Something akin to Shrimp or woodlice.. and dead ones often go reddish ...

More detail on the geographic location and story before the find would be useful to take identification further.

Hi David,

Firstly, sorry it took a few days to get a reply here.

Those are great photos, and many thanks! Especially you photograph laterally (side view) and ventrally (underneath), such photos are often really useful for identification, and unusual to see! (i'm more used to a couple of blurry pictures often of a needlessly crushed animal!). It's a welcome change!

Well you spider is a member of the family Sparassidae. As it's in the US, i'll direct you to a really good US spider site: And linked to that family.
It would have been helpful if you gave more detailed location, at least your state or nearest city and such, although it sounds like it was with some store produce and you think from elsewhere. You could indeed be right, but many other cases i've seen people mistake local wildlife for non-native.
In this case though i think you're right, i'm favouring a female of Heteropoda venatoria, a well known hitchiker with cargo. Take a look for the recent article by Vetter et al. (2014) "[size= 12px]Spiders (Araneae) Found in Bananas and Other International Cargo Submitted to North American Arachnologists for Identification", which shows a pair of H.venatoria, the male and female are quite different in appearance.
The female has a distinctive white band "moustache" near the chelicerae, as yours has, making me think of that first. It's one of the most frequently imported, and has spread across many tropical countries, and consequently often imported to USA, Europe etc.

But, also take a look at your native species of the genus. There seem to be four species, foucused in the SouthWest of the USA. See how those compare please. Olios. … 03-530.pdf
Anyway, if it's H.venatoria then its a non-native invader, but realistically harmless to humans - the venom is not significant, although not good to have released in local environment - i think for example they've come established in Florida, but at what harm to existing wildlife? If another native species (where knowing your location would i expect help confirm against), then practically harmless and no cause for undue alarm. :)


It appears to be of the family Anyphaenidae - can be called 'Ghost spiders'.

These spiders are active climbers and can run very fast. Actually you saying it can climb glass is useful to ensure it likely has scopulate hair pads on the feet - which is a useful characteristic to help ensure identification.

Beautiful photographs by the way. A useful addition in this case would have been a photograph of the ventral abdomen, as for these it's often possible to see a split region which is entry of breathing tubes - tracheae.  Most spiders only breath through book lungs - flat plates for gas exchange, but some have extra breathing tubes, and for Anyphaenidae the position of the entry of the air.

I cant go more specific on the identification, there's at least 23 species of the family in Colombia, in several genera. A couple can be ruled out, but most cannot from just photographs - sorry but spiders are often very poorly studied - a formal description of some characters may exist, but only in Europe and USA do we have 'field guides' and 'photo-guides' helping people match things they find.

Here you can find an overview of the family and access to papers on particular species, but the literature gets very technical very quickly.

Cool picture!

It appears to be a smooth legged tree-cricket, something like Neoxabea bipunctata

This is an awesome site for identifying USA insects and allies.

People are often surprised by new things and wonder if non-native, the answer is often the things are native, just obscure for much of the year or low abundance. Hopefully you share your picture around and tell others of your find - see if they've seen them around locally before.

I'm guessing it's not alive after your enconuter, but to reassure you it was harmless. It's defense was that vinegar like chemical, a slight spray. Good against other inverts, pretty useless against us.

As per alistair, not an insect, you can find more info on the 27 species known from Indonesia here, which will get you some possible names to search about futher. The front palps are the strong parts on the front, for crushing prey - purely mechanical. The "tail" is a flagellum - a fine sensory structure that is soft with fine hairs.

No venom, not danger, just tough things than use strength - but not strong enough to resist us humans that dislike them. No need though, harmless and wonderful creatures.

There's a whole lot to these scaremongering reports that shouldnt be believed. People writing these know little to nothing about spiders, and even less about medical conditions. The issues often match beautifully to common bacterial conditions, septicemia, necrotising fasciitis etc, all with bacterial origins, which can be caused by all manner of pucture wounds - nothing to do with spider venom (aka deadly 'poison' in the press).

I'd personally file it under "possible things you can die from that are much more likely caused by getting scratched by your pet cat, dog or even dirty cutlery than a spider" ... note she doesnt appear to have actually seen a spider and the quote "the poison was going straight to my heart" shows she didn't understand the worsening condition was caused by spreading bacterial toxins. I'd have like to know how many days it was before she went to the hospital, the reports dont specify that.

I'm really not sure to be honest, but it looks most like a barklouse/booklouse to me, and the winged forms would be refered to as alate.

Not much to sugggest, except take a look here and see what you think might be a good match, and even post your photos there, as that is a US focused invert site. For me i see resemblance with Epipsocus, but i'm really not sure.

I wonder if it could be attracted to your stored dog food, and rather than being just in the bowl is actually in the stored bag etc. These should eat some moulds and such that develop on dried foods and other such substances, so maybe removing any damp that's keeping these things alive rather than pesticides is your answer. Sorry not to be more specific, but hopefully a useful lead.

It was great you gave the geographic location where you found it, because that really rules out it being a tarantula - at least a native one. There is of course a small possibility it is an escaped pet. If so possible candidates are Cyriocosmus and Hapalopus, both quite bright coloured/patterned small tarantula but from South America - although both groups kept as pets in Canada.

There are no native tarantulas in Canada. There's a wider group of spiders that are close allies called mygalomophs, which share with tarantulas downward biting mouthparts amonst other features. However, in Canada, theres only 5 groups, and nearly all restricted to British Colombia. There is one towards east central, Sphodros niger, which ranges around the great lake region and into Ontario, but i've found no reports of it for Manitoba.

Here's what they're like

I'm not really familiar with other kinds of spiders in your region, so as Dave said, if you can post a phot, that would be really useful.

(posted in Mammals)

Agreeing with David, i suggest you perhaps run the experiment and compare our expectations (that a given rat with unlimited food will soon get satisfied) with that of your biology teacher (that one with unlimited food will continue to eat). Ideally have several rats of equal starting weight (such as siblings of same sex that were born at same time) with slightly different amounts of the exact same food+drink, at least one with unlimited amounts of both in 'superabundance', and carefully record in amount what they each eat (or what food gets discarded). You could also record percentage time eating versus say sleeping or grooming. Stop the experiment for any rat that seems to be overeating dramatically (because we dont want any animals suffering), but i dont expect so.

Sorry, i disagree on the second,
It is family Philodromidae, something like Tibellus sp.

Dear Keith,

The insect you show is something now extinct, Palaeodictyoptera. So, either you somehow have a dutch time-machine, or what you saw is something different.

Here is the same as a drawing. I guess your image is a model of this.
ie Goldenbergia sp

If you did see an insect but you are using an image from elsewhere (that you are not sure of), then please be clear to us - either so we know its not the same, but also to avoid copyright issues. 

For living insects that are similar, and could be yours, take a look at stoneflies, Plecoptera, ive seen some about 10cm, and with two long cerci as 'tail'.

I'd suggest this shows you why scientists use 'scientific'/'latin' names as the lingua franca. ... so next time you are confused what species the people are refering to, ask them what the scientific name is... as each species has a unique name - as alistair so nicely explained!

I am pleased you say you just scoop up and take outside any such that you find, as i'd suggest no need to just kill such needlesly. Live and let live.

It sounds like you keep a very clean house, and after your discover have made an effort to check for sources of your intruder. Well, such happens, and provided there is no source of old infected food tucked at the back of a cupoard, the occasional visitor is to be expected. Your home/kitchen is not in isolation of the world, a few things form outside will find their way in occasionally, and its just a fact of life. Sometimes, new food from outside will have the odd hitchiker in, and dry dogfood especially, as could have been kept in conditions less than ideal. You may make the best effort to keep your home bug free, but the place you by drystuff like dogfood from may not be so careful.

Im sorry if you dont like this, but you seem to be doing the best you can to keep things clean and tidy, so the occasional visitor you see wont be able to start up home with you, especially if you evict any such you find.

Just one carpet/larder beetle does not make an infestation. :) hope you can relax.

Yes, indeed. I've seen them in central america, quite commonly.

like other true bugs, they have a piercing /sucking mouthpart = rostrum, and if they get that into you, i too have heard is very painful. (but they have no venom nor anything toxic, its just mechanical damage - though they can inject digestive saliva)

Anyway, its nothing to worry about, i suggest just leave be, cool find. Just dont get stabbed by its rostrum!

Hi, well, it would be great to have such stories, and im glad to hear you are trying to get some biological realism into the encounters.

I suggest look into Anomalocaridids too, but eurypterids are great too.

My impression of alot of modern arthropod predators and other extinct ones are alot are in favour of the 'snatch and test' approach, ie grab first, then sample and decide. The first response it to attack but with caution, hence using strong but long palps or the like to first hold the prey at a safe distance from the rest of the more delicate body. i'd suggest look into feeding of creatures such as Amblypygi =whip spiders. Then provided the prey can be restrained easy enough, then bring it closer to the chelicerae or whatever feeding structures. Good eyesight appears to have been critical for early evolutionary success, which would i suggest be mostly about detection of movement. Though early arthropods could also have had a strong advantage by colour vision too, so the colour of prey might be vital, and might be a big cue for predators of something being a good prey, or dangerous - colour for warning each other. alot of athropods indeed have soft parts, but would typically be enclosed by armoured region and protected/ gills are an obvious soft part that must be exposed, eyes also. Most noises underwater are difficult for us to detect, but i suggest look into the snapping of mantis shrimps for example of noise being used also for prey capture. Most arthropods are solitary, but social ones are not unusual, particularly common for aggregations in mating seasons.

e.g. Van Roy and Briggs 2011 … 09920.html

Exactly, this creature is probably one you want around if you want to keep your plants free of pests, just spraying to kill all insects isnt the answer - some insects like these are actually beneficial to control others you'd probably consider pests!


Ok - im not great on ones like this, but they look to be Crustacea, not insects. Im thinking they are Amphipods or similar, so 'sandhoppers' is a useful name.

So, not Collembola which are quite close to insects (Collembola are hexapods, so 6 legs -same number with insects). These here have more than 6 legs. True fleas are a type of insect, so again would have 6 legs. These are not fleas.

These look to be 'sandhoppers' but also called 'sand fleas'. But, very very distant from true feas, which are insects, instead these are Crustacea.

Not the faintest clue why they are in your dog bowl! Maybe your dog has been carrying them as hitchikers, but they'd be totally harmless. If you live near the beach or regualrly take you dog for beach walks, it might be picking them up, then brought into the house, where the find the waterbowl.


Just going back through some old posts. Sorry i didnt see this earlier.

It looks very much to be one in the family Lycosidae, and my first guess is something in the genus Hogna, such as Hogna carolinensis which get upto about 2.5cm body. They also dig burrows like tarantulas, often with a silk turret, which is thought to keep out scorpions primarily.

When you say 'looks like a tarantula', it leads me to note that these are very evolutionarily/historically distant from what most of us call tarantulas these days (family Theraphosidae) which have downward biting fangs. The one here (family Lycosidae) is actually part of another major group of spiders, mostly web-building ones, with inward biting fangs. But, that said, the 'original' tarantula, which that name comes from is actually named 'Lycosa tarantula' from italy (and around) is also actually one of the family Lycosidae yours!

agreed, and more specifically, S = svedberg.. a unit for the sedimentation coeficient, ie time to sediment.. 17 svedberg., but yes, its a proxy for size/weight

Hi, i dont work on beetles, but have worked with people who do... hopefully however someone else here with more specific expertese will improve..

There are major differences between scarabs and leaf beetles, theyre quite far apart evolutionarily, separated a long time ago. For defining leaf beetles, i think it was the segments of the feet (tarsal formula) was important to condider, though im not sure what else. For scarabs from the little i know, antennae structure is normally useful to consider, and specifically--  this below is from a recent paper:

For reliable identification of a specimen as belonging to the Scarabaeoidea, the four imaginable synapomorphies are as follows: (i) antennae with lamellate club; (ii) pronotum and fore legs adapted to burrowing; (iii) reduced wing venation and intrinsic spring mechanism for folding of alae; and (iv) prosternal intercoxal process widened apically behind procoxae (Hansen, 1997; Krell, 2000; Lawrence & Britton, 1991)

Text From:

New fossil evidence of the early diversi?cation of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China

Ming Bai , Dirk Ahrens , Xing-Ke Yang and Dong Ren
Insect Science (2011) 00, 1–13, DOI 10.1111/j.1744-7917.2011.01460.x3

Also look at

Forgie et al. 2004 Evolution of the Scarabaeini (Scarabaeidae: Scarabaeinae). Systematic entomology. 30:60-96


Not quite an answer, but hopefully a helpful lead..

I fear this sounds like a homework question, if its not, im sorry to not answer more completely!

The current scientific opinion on why arthropods are smaller than most vertebrates is to do with how their bodies transport gases (especially oxygen) to their body cells, and removes carbon dioxide.

Im not going to be more specific. Part of your question refers to modern arthropods. What about arthropods in the past? What does the fossil record suggest about sizes of some extinct arthropods? Was the earth's climate always the same as nowadays or different ? Lots to look into.


Well, the answer wasnt obvious to me, so i did a little digging, and i failed to find any credible references that suggested it to be Keratin.

All credible sources indicate the important hardening component of squid beaks is indeed Chitin. Importantly, chitin is a polysaccharide, while keratin is a protein. These are radically different compounds. Part of the confusion might be that squid beaks seem to be composed both of chitin polysaccharides, plus some proteins, but these do not appear to share evolutionary history with vertebrate only keratin.

"Its main constituents are chitin fibers (15–20 wt.%) and histidine- and glycine-rich proteins (40–45%)." Miserez et al. 2007. Acta Biomaterialia 3(1):139-144 … 6106001231

Also see:
Messersmith, P.B. 2008. Multitasking in tissues and materials.
http://biomaterials.bme.northwestern.ed … M_2008.pdf

Which discusses this article..
Miserez et al. 2008. The transition from stiff to compliant materials in Squid beaks
Science 319 no. 5871 pp. 1816-1819

"The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications."

Hi... Ok, 'no pressure then' -  thanks dave!

Yes, well - absolutely one of the orb-weavers, family Araneidae    

I expect it might be genus Araneus, but im sorry i cant be more specific. Firstly, all your pictures are all of its underside, so next time a picture from the top also would be useful. I know its sometimes difficult to take photographs from other angles. Sometimes though, identification by photgraph is still difficult, as colour markings of some species, particularly orb-weavers can be very variable. Yes, i expect it is an adult female too, and in the second and third photos has a nice meal wrapped up in a silk basket.

In ohio, there seems to be 14 species of orb-weavers in this group Araneus. Also as Dave rightly said sometimes the spider needs to be closely examined to work out what it is, often requiring a microscope and a dead specimen unfortunately.

If you are interested, there is actually a guide book on Ohio spiders, you might be able to loan it from a library. I dont know how technical it is though.
Bradley, R.A. 2004. In Ohio's Backyard: Spiders. Ohio Biological Survey, Columbus, OH. 

Also, Dr Richard Bradley (who's book it is), is at Ohio State University: has a webpage,  seems a little out of date, but worth a look, and maybe he might like to see other pictures you take of Ohio spiders !

Dear Matt, Excellent photo - lovely creature.

Dave, im rather shocked i think i can top your answer... its novel for me!

I recognised it as being a blister beetle (also called an oil beetle), of the family Meloidae - so its a beetle , and these also produce a nasty toxin called cantharidin.., and this one seems to be Megetra vittata, or extremely close species to it.

a good forum for US inverts with these is here: 
and for Dave to see both sexes are swollen, but yes, particularly the females

It could be a problem of trying to shoehorn diverse strategies into either k-or r-selection, and theres plenty of examples that dont fit either, or some traits seem k-selected others, more r-selected, organisms adapt to use whatever strategy works best at a given time in a given situation.

To me, the strategy of  'adenotrophic viviparous' Diptera like tsetse flies allows the adults to rapidly exploit food from whatever hosts is encountered, from multiple dispersal events (each adult female landing and quicky feeding herself and developing larvae), which is sounding awfully like an r-selected movement and feeding strategy. That differs radically from lice that tend to cling to the same host for long periods, or fleas which occasionally switch. 

Im not sure how selection may have led them to retain single larvae internally until just before pupation, yes very k-like, but shows the adult food source can sustain development, and that perhaps high population density is not supported (so if they had many offspring few would survive - so best invest more in fewer).

Finally, i'd add that internal symbionts like Wolbachia can have profound effects on the life and behaviour of their host insects .. perhaps these or other symbionts are
having a role in their life-strategies?

Its difficult to say, but yes, the families Gnaphosidae or
Clubionidae/Miturgidae spring to mind, and Drassodes is quite plausible.

my money is instead on Scotophaeus blackwalli (also called Herpyllus
blackwalli), which can show a preference for being inside houses... and
sometimes called the 'house mouse spider'.

Nothing to be worried about, these naturally range across UK and wales


Well first thing, im not an expert in identifications, but to me it looks most like a soldier beetle, either genus Cantharus sp or Rhagonycha sp.

There seems to be about 40 species in the UK (if thats where you are, i think you dont say your location). Anyway, all seem to be predatory, and i have often found some in the heads of flowers, i think eating insects attracted there).

 Anyway, if they are some sort of soldier beetle, then i dont know of any particular pest problems, and suspect they might actually be helpful controlling potential pest insects in your old home.

Thanks for taking a good picture, the link worked fine for me.


It looks to be some sort of velvet ant (e.g family Mutillidae). Actually theyre quite closely related to regular wasps, even if they look like ants. (ants are close cousins though). They are harmless and often solitary. But, good to be careful as they do have a sting like other wasps. Generally they act as sort of parasites of other insects like communal wasps. They lay eggs in bee or wasps nest, and then the young feeds on those larvae. Actually rather than causing a problem for you, this creatue may have prevented you getting a huge and problematic wasp nest inside your plaster walls !

Hi Luke,,

Im wondering if it is a homework question, so next time you put a question it would be great for you to explain why you are asking, like did you see lots of types of beetles recently outside, or in a museum. That kind of thing.

Yes, well there are lots and lots of types of beetles. And there's still expected to be plenty more unknown especially in the tropical forests. So, first we have to talk about 'known' versus 'described'. Someone might go to a new place, like an unexplored mountain, and find some beetles. Then its a long process to work out if those new finds are already known, or if they are different from others and need a proper description published and a name given. Then they are officially known. So, when lots of scientists (here Coleoptera taxonomists) work on a group of organisms like beetles, lots get investigated, and lots get proper names, so many abecome scientifically known. As an example, there are possibly just as many types of mites as there are types of beetles, but there are fewer scientists working on them, and they are smaller and simpler creatures, so its difficult to work out how many types are found. Also difficult to work out if some need new names.

Anyway, there are lots and lots of beetles. Scientists have thought about unique features of beetles, and thought those might help species survive and diversify. The hardened upper wings (elytra) are a unique feature of most beeltes, an might mean that beetles can survive predators when other soft insects get eaten. So, beetles might survive in more areas. Related is that these wing cases and other thikened cuticle (body covering) can mean beetles are more resistant to water loss, so can survive in very dry regions like deserts, when other insects cant. Quite simply, more locations, more habitats -> more opportunities and more species can coexist. Also, different types of beetle eat pretty much everything, some eat fungus, some eat seeds, some eat leaves, moss, wood, other insects, snails, others eat poo, feathers, etc etc. Lots of opportunities, and lots of groups specialise on just one of these food types, while other species or lineages specialise on others. Lots of specialists means lots of species.

But, the big thing that helped beetle diversity is thought to be plant diversity. When flowering plants started to appear in the late dinosaur times, then beetles were already around. Some moved onto these new plants to eat leaves, others suck sp, others eat stems, others eat roots, others eat seeds. As the new types of plants appeared, some beeltes moved to those new plants. Co-speciation. There are thought to be lots of leaf eating moths for the same reason, many types only found on a single species of plant, so more plants, more beetles and moth. But for beetles, the seed eating made many more unique, many adapted to only one seed type which provided food, and provide shelter for developing eggs.

Then other things. One major group of beetle are called rove beetles, (Staphylinidae), have much shorter hardened forewings. They have the unusal and amazing ability to fold their huge hindwings under these tiny cases, i like to think like little jet-packs. These hidden wings mean they can burrow into soil, or leaf little and their bodies are very flexible. They can fit in tiny spaces to find hidden food or are nimble enough escape from predators. Their wings mean they can easily move to new areas in search of more food or mates.

Finally, another group of diverse beetles are tiger beetles. These have amazing vision, mainly to hunt food insects, but also likely to find mates. They also have bright colours and iridescent sheen, likey for display to potential mates. When for example females choose males based on colours or dislays, this can help new species form, when females in different areas have divergent preferences. Females in one area like green males for example, females in another area like blue males. Soon selection works so that two species form, one with nearly always green males and another with nearly always blue males. Such sexual selection is also useful to explain the diversity of stag beetles, where males with different shaped horns no longer compete, but thats getting too specific.!

Perhaps its just all about an Inordinate fondness of a higher power. … isplay.jpg

Hi Jay,

Huh, never heard that before, it does sound like one of those urban legends to me though already. I say that as the visual system of wasps is really poorly known, and scientists have only really known about the vision of closely related honeybees in about the last 15 years.

The reason i am going to doubt the reality of this, is that all insects including bees, wasps and ants, all see colours completely differently than we do. So, though we see the sky as blue, we humans see colour using a combination of three major receptors, called opsins, one optimised for red, another for green, and a third for blue. theres also a forth called rhodopsin, really which only works in dim light (ie when there is not enough light around for the others, and we cant see colour). What we see as blue in the sky, or in paint, is really more of our blue receptor responding to light bouncing of the paint (or bouncing off dust in the sky). The other opsin receptors in our eyes also respond to this light, but not so strongly, nor in such large proportions as the blue-optimised receptors do.

Now, insects like honeybees are known to have three receptors, other insects have more, some types have less. Honeybees have a receptor optimised for blue also, another for greenish light, but their third type is for UV light. That is light in part of the spectrum we cant see as none of our receptors is sensitive enough to it. And this receptor is the main reason i would suggest that insects see blue paint in a totally different way to the sky ... the sky has ultraviolet patterns in it caused by clouds, dust and magnetism, that will make sense to insects, some of which they use for navigation,e.g. lines in the sky that they may use to direct them which way is north. The paint should be one flat colour, which may or may not have any UV signals (depending on its components), but more importantly not necesarily interpreted by the insects as the same base color as they see the sky..

 Ok, sorry... not an easy answer. In short, insects see 'blue' in a totally different way than we humans do, so they probably wont be fooled so easily !!

.. it seems they stick the dead bodies of aphid victims to themselves also..

and sorry, an american stage of my education leads me to call larvae of all lacewings as antlions. (whether or not they make sandy pits for insects to fall into). Seems indeed that Euroleon nostras is the only UK species where the larvae do this...

anyway, we agree its a lacewing larvae!

Well, im glad to have debate.., hopefully Ajna see's that i was just trying to make things a little clearer, and show its important to consider lots of other arthropods, as she certainly knows.

Dave has surprised me slightly, and he has spent alot more time in muddy swamps looking at larval aquatic insects than me. Honestly i can admit i never saw a first stage dragonfly, but have seen lots of other first stage insects with definate 'nymphs' as the earliest hatching stage. As ajna rightly said, evolution can act on all life stages, reducing some, expanding others. I think my point still stands that there are plenty of other insect types that arose 'after' dragonflies (like aphids, mantids, crickets) have only nymphs and no sign of a maggot-like stage.., and 'holometabolan' insects arose much later and aquired a larval form, but then holometabolan insects might be more basal than is currently assumed.... ok, time to go, i must revise some of my data...


Ok, well its going to be brief as i can only give a rough identification.

It looks very much like the larvae insect such as lacewings (order Neroptera), which are often called 'ant-lions'. Why?, the larvae often make pits in the ground where they wait at the bottom with huge-jaws open, until other insects like ants accidentally fall in, which they grab and eat. Its different you found it in the open, so im not sure if some species of ant-lions crawl in the open like this.

It appears to have bits of dirt and debris attached to its body, which i suspect helps give it camoflage/disguise its shape (which makes sense if it craws around actively hunting), so are not parts of the insect nor pests, but instead likely 'add on camoflage'. or even added protective armour.

If its not a larvae of a lacewing, then its a predatory beetle larvae, but i dont know any that look like that... anyone else??!!?

No sign of the mushroom pics.., perhaps not needed. :)

Thanks for a great photo, and for giving your location. Useful to us.

Well, im going to disagree...

Provided you are in europe, such as the UK, The second picture to me is a cockchafer beetle, like Melolontha melolontha, as to me it looks rather me beetle like. These often also have a spike on the end of the abdomen (its how females lay eggs).
The antennae would be the quickest way to tell, but i cant see them on your pics.

but... better to think its a Chafer-beetle than a cockroach no?

I expect it flew in, expecting the coke to be rather tasty, and then fell in.


Well, sorry to report that its a genus of stick insects that im not too familiar with. I kept alot of others, but not those. Perhaps better if you direct your question specifically at a stick insect forum, or members of one of the organisations like the phasmid study group.

But, i expect the best route is experimentation yourself knowing they should take these foodplants. Try different varieties and 'species' if you can identify them. Often stick insects are not so particular, and will eat most members of a prefered plant genus, but it could be interesting to explore this and report your finding to those forums and societies. Avoid the youngest leaves that may have toxins, and try and make your results comparible across different days, eg standardize the amount of plan introduced, the size of leaves, the length of time the plant is left in with the insects. Then you can compare amount of leaf area eaten on different plant species, to see if they may prefer one type/species over another.

Well, in hope someone else here knows more about Asceles than me !
Best wishes


Im sorry its difficult to say. A closer picture would help alot, though thankyou for putting the location where you found it, the location normally really helps.

From the way its sitting, i was thinking towards some sort of orb-weaver (Araneidae), but there are others that can look quite similar like fishing spiders (Pisuriidae) and 'running crab spiders' (Philodromidae, ie Thanatus sp), im possibly going to settle on the last possibility as my favourite, due to you saying it seemed to have a fiery personallity !!

Maybe a question for a website specifically aimed at identifying american 'bugs'
like or
At these sites you will find more specific experts... hope they can help !

Best wishes

Hi Pat,

As i understand it, there is still some weak form of recapitution during development, so the idea is not entirely dead, just in a much softer form than
the ideas of Haeckel, who i am led to believe wasnt entirely truthful about his data and observations in a few cases.

But, im not going to agree on this being useful to understand larval insects, as those with distinct larvae (in a group called Holometabola including beetles and flies) are a derived group, meaning they definately evolved from ancestors without distinct larval forms, the ancestors being insects similar to mayflies and dragonflies, which have juvenile nymphs, and also wingless insects like silverfish and firebrates, again with juvenile nymphs.

So i hope when you are talking about larvae, i think you mean the juvenile forms we can refer to as maggots (in some flies), or catepillars (butterflies, moths), and various other names like larvae (particularly for beetles). All these are holometabolan insects, which have a tripartite life with distict larvae-pupae-adult. There are a few exceptions, but thats it in the rough overview.   Now, its currently a bit debated which other group of insects is closest, either Paraneoptera (which includes things like aphids) or Polyneoptera (which includes things like earwigs and crickets), but it doesnt really matter. Point is these other groups of insects dont have larvae, their juvenile forms are much like the adults, just without wings, with undeveloped sexual organs, and a few other minor differences. In these other insects the juveniles are callled nymphs. Same with other definately more basal insects like dragonflies, damselflies and i mentioned above. etc etc.

Point is, that in all these other insects, which emerged as distinct forms earlier on in the evolution of the group, all had juveniles are more similar to the adult form, and consequently, we can be confident that the distinct larvae of holometabolan insects is derived, rather than possibly representative of the ancestral forms.

Well, if larval forms of holometabolan insects is indeed a greatly expanded developmental stage, which is indeed possible, then its an expanded stage of the very early development in their ancestors, while many later stages 'instars' that are seen in nymphs of other insects are lost. Thats a huge shift, and not totally unreasonable, but i dont think there is any real capacity for the larval stage to indicate anything like recaptulation of the ancestral forms.

Finally, a note to Ajna ... there are huge problems with relating aspects of velvet worms to the larval forms of insects. There are many other major branches of the arthropod tree between these lineages, ie chelicerates and myriapods. As you know, there is very strong evidence that 'Crustacea' are actually the sister-group to insects, so if we want to understand the early evolution of insects we should appeal to those closer relatives rather than more distant ones. Otherwise you have the danger of comming up with some absurd theory of genetic-exchange between velvet worms and insects as an 'astonishing and absurd claim', and getting ridiculed for a terrible paper in PNAS..... :)


Sorry, im not the most clued up on UK moths, and there are plenty of very similar looking species. Best i can do is redirect you to the valuable web-link below, while perhaps we wait for someone else to help out.

This is a great resource of picutes on UK moths. I was thinking it might be in the family Tortricidae, anyway, take a look, and see if you think anything fits well.

perhaps one of these.. … ortricinae

Best of luck, i also suggest that if you are interested in identifying other insects, you get a copy of the book by Michael Chinery, the collins field guide to british insects, its a great resource.

Best wishes

Hi Alex.

Yes Jessica is right, its often low humidity that causes problems. Best you can do when they have a problem moult is to wet the old skin in the places you want to try and remove, wait a couple of minutes for the dry skin to soften, and then remove what you can. They should shed the entire skin in a single time though, not as small pieces. They should split down the central line and pull themselves completely out the old skin in a single time. It sounds like either it is not moulting completely or something has gone badly wrong. Im not hopeful, sorry to you, but im not sure you can do anything much to help. But, yes, try spraying with water to increase humidity.

Hi Denise,

Well without a photo i can only make an educated guess, but theres an obvious candidate.

I suggest the culprit is vlikely to be a mullein caterpillar (Shargacucullia verbasci), that turns into a brownish moth, though one

that looks a little unusual, and the larvae definately eat verbascum.

Is really great you give such a good identification of the host plant, that really helps, even without any photograph of the actual insect!

Heres a good overview of it. … a_Verbasci

Hope that looks like it to you, the markings seem to be variable on catepillars, so maybe the orange/black spot markings arn't exactly the same.

To me they're quite pretty even as adults, though brown moths...

Best Wishes


Hi again Mike, Thanks David.

Well, im not going to rule out a UK intorduction of a US-Native, but i strongly suspect it is infact a UK/European relative of the american dog-bane beetle (C. auratus), for example the european species Chrysolina herbacea looks superficially very similar to C. auratus (to me at least), and is native to the UK, often found on water mint, but also thyme, and sometimes on stinging nettles. I know theyre in Birmingham and the southern UK, but dont know how much further north they range. You havent been making water-mint pesto have you?

There maybe other species of leaf-beetle in the UK that look similar, but i would also would need to consult a specialist on british beetles!!

Heres a link to British C.herbacea for you to talk a look at, but thats what i think you found, rather than a US introduction. Hope that helps ! Thanks for clarifying with further details in your reply.

Hahaha, well - sorry i didnt get to this sooner !

Does this mean you are in the US, if so could it have just come in with some cut-flowers, or other things from the garden? Its the right time of year for adults to be around now, so it sounds like an accidental introduction.

But, you still have me thrown with the 'ladybird' usage, making me think you are in the Uk. If so, we have native species (ie those from the UK) that do look superficially very similar to the dogbane -beetles..

If you are in the Uk, its worth considering if its a rainbow leaf beetle, Chrysolina cerealis... as those are extremely rare!

Best wishes